





#### **AMR Alliance Japan**

## Awareness Survey on Reforming Existing Systems to Achieve Sustainable **Antimicrobial Resistance (AMR) Countermeasures: Looking Beyond the COVID-19 Pandemic**

## **(Overall result)**

### [Survey overview]

Objectives: To clarify the gap between the awareness of the issue in the field and the related policy by identifying the attitudes of medical professionals (physicians, pharmacists and medical technologists) engaged in infectious disease care toward the Drug Development and Testing system.

Research period: November1st 2022 ~ November 14th 2022

Subjects: Physicians / Pharmacists / Medical Technologists of eligible society officers and members

Method: Email and website posting

Number of responses: 391 (Physicians 72、 Pharmacists 72、 Medical Technologists 247)

\*Please note that freeform responses are excluded from this short survey analysis and will be published separately at a later date.

#### 1. Please tell us your occupation

| Options              | n = 391 | n (%)   |
|----------------------|---------|---------|
| Physician            | 72      | (18.4%) |
| Medical Technologist | 247     | (63.2%) |
| Pharmacist           | 72      | (18.4%) |

#### 1-1. For those who selected "Physician," please share your main field of specialty.

| Options                                                  | n = 72 | n (%)      |
|----------------------------------------------------------|--------|------------|
| Infectious Diseases                                      | 1      | .4 (19.4%) |
| Internal Medicine                                        | 1      | .1 (15.3%) |
| Pediatrics, Pediatric Infectious Diseases, Neonatology   | 1      | .0 (13.9%) |
| Respiratory Medicine                                     |        | 9 (12.5%)  |
| General Medicine                                         |        | 5 (6.9%)   |
| Urology                                                  |        | 3 (4.2%)   |
| Hematology                                               |        | 3 (4.2%)   |
| Surgery                                                  |        | 2 (2.8%)   |
| Laboratory Medicine                                      |        | 2 (2.8%)   |
| Dentistry                                                |        | 2 (2.8%)   |
| Public Health and Occupational Medicine                  |        | 2 (2.8%)   |
| Respiratory Medicine and Respiratory Infectious Diseases |        | 2 (2.8%)   |
| Rheumatology                                             |        | 1 (1.4%)   |
| Rehabilitation Medicine                                  |        | 1 (1.4%)   |





### 1-1. The following question is for respondents who selected "Physician," please share your main field of specialty.

| Options                          | n = 72       | n (%)    |
|----------------------------------|--------------|----------|
| Cardiovascular Internal Medicine | <del> </del> | 1 (1.4%) |
| Emergency Care                   |              | 1 (1.4%) |
| Geriatrics                       |              | 1 (1.4%) |
| Nephrology                       |              | 1 (1.4%) |
| Dialysis                         |              | 1 (1.4%) |

## 1-2. The following question is for respondents who selected "clinical laboratory technician." Please select all the tests you perform. (Select all that apply)

| Options                              | n=247 | n (%)       |
|--------------------------------------|-------|-------------|
| Microbiological tests                |       | 138 (55.9%) |
| Immunological tests                  |       | 68 (27.5%)  |
| Hematological test                   |       | 85 (34.4%)  |
| Pathological tests                   |       | 15 (6.1%)   |
| Biochemical tests                    |       | 93(37.7%)   |
| General tests (urine, stool, etc.)   |       | 90 (36.4%)  |
| Gene-related tests, chromosome tests |       | 61 (24.7%)  |
| N/A                                  |       | 24 (9.7%)   |

1-3. The following question is for respondents who selected "pharmacist." Do you possess a recognized specialty certification in infectious disease control (including "Board Certified Infection Control Pharmacy Specialist" or "Board Certified Pharmacist in Infection Control" from the Japanese Society of Hospital Pharmacists (JSHP); "Antimicrobial Chemotherapy Pharmacist" from the Japanese Society of Chemotherapy; "Infection Control Doctor" from the ICD System Council, etc.)?

| Options | n=72 | n (%)   |  |
|---------|------|---------|--|
| Yes     | 51   | (70.8%) |  |
| No      | 21   | (29.2%) |  |

### 1-4. Please share how many years you have served in the role you selected.

|                              | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|------------------------------|----------------------------|----------------------------------|-----------------------------|
| Years of exprience (mean±SD) | 26 year (±10 years)        | 20 years (±11years)              | 18 years (±9years)          |





2. Please select the type of healthcare facility that is your main affiliation.

| Options                                                         | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|-----------------------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
| Clinic or medical office                                        | 7 (9.7%)                   | 8 (3.2%)                         | 0 (0.0%)                    |
| Hospital (other than university hospital) 20 to 399 care beds   | 29 (40.3%)                 | 158 (64.0%)                      | 30 (41.7%)                  |
| Hospital (other than university hospital) 400 or more care beds | 14 (19.4%)                 | 55 (22.3%)                       | 23 (31.9%)                  |
| University hospital or research institution                     | 20 (27.8%)                 | 18 (7.3%)                        | 14 (19.4%)                  |
| Health insurance pharmacy                                       | 0 (0.0%)                   | 0 (0.0%)                         | 2 (2.8%)                    |
| Other                                                           | 2 (2.8%)                   | 8 (3.2%)                         | 3 (4.2%)                    |

3. Please share the postal code of your main affiliated institution. (This will be used for screening in order to avoid gathering multiple responses from the same institutions. It will not be used to identify any individual or to contact your affiliated institution, nor will it be presented publicly or be used for any other purpose.)

→excluded

4. Were the antimicrobial shortages that occurred starting in March 2019 an obstacle for your everyday activities?

| Options | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|---------|----------------------------|----------------------------------|-----------------------------|
| Yes     | 36 (50.0%)                 | 68 (27.5%)                       | 53 (73.6%)                  |
| No      | 36 (50.0%)                 | 179 (72.5%)                      | 19 (26.4%)                  |





5. As of 2020, the prices assigned to antimicrobials designated as "Key Drugs" (which are essential pharmaceuticals for treating infectious diseases) by the Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, the Japanese Society for Clinical Microbiology, and the Japanese Society for Infection Prevention and Control were as follows. Do you think that the prices currently assigned to antimicrobials are appropriate overall?

| Options                 | <b>Physicians,</b> n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
|-------------------------|---------------------------|----------------------------------|---------------------|
| They are extremely high | 1 (1.4%)                  | 2 (0.8%)                         | 1 (1.4%)            |
| They are high           | 3 (4.2%)                  | 63 (25.5%)                       | 9 (12.5%)           |
| They are appropriate    | 29 (40.3%)                | 155 (62.8%)                      | 14 (19.4%)          |
| They are low            | 33 (45.8%)                | 26 (10.5%)                       | 30 (41.7%)          |
| They are extremely low  | 6 (8.3%)                  | 1 (0.4%)                         | 18 (25.0%)          |

### Key drug list:

|                            | Units           | NHI price (Original | NHI price  |
|----------------------------|-----------------|---------------------|------------|
|                            | Offics          | product)            | (generics) |
| Benzylpenicillin           | 200,000 units   | -                   | 234 yen    |
| венгупренисини             | 1,000,000 units | -                   | 323 yen    |
|                            | 0.75g           | 407 yen             | 315 yen    |
| Ampicillin / Sulbactam     | 1.5g            | 522 yen             | 422 yen    |
|                            | 3g              | 656 yen             | 518 yen    |
| Tarahastana / ninarasillin | 2.25g           | 1079 yen            | 591 yen    |
| Tazobactam / piperacillin  | 4.5g            | 1434 yen            | 883 yen    |
|                            | 250mg           | 230 yen             | 230 yen    |
| Cafacalla                  | 500mg           | 234 yen             | 234 yen    |
| Cefazolin                  | 1g              | 263 yen             | 263 yen    |
|                            | 2g              | 444 yen             | 356 yen    |
|                            | 250mg           | 185 yen             | 180 yen    |
|                            | 500mg           | 271 yen             | 271 yen    |
| Cefmetazole                | 1g              | 441 yen             | 441 yen    |
|                            | 2g              | 836 yen             | 740 yen    |
| 6.6.                       | 500mg           | 343 yen             | 239 yen    |
| Ceftriaxone                | 1g              | 380 yen             | 250 yen    |
| 0.1                        | 500mg           | 432 yen             | 369 yen    |
| Cefepim                    | 1g              | 415 yen             | 395 yen    |
|                            | 250mg           | 622 yen             | 391 yen    |
| Meropenem                  | 500mg           | 691 yen             | 487 yen    |
|                            | 1g              | -                   | 863 yen    |
|                            | 500mg/20mL      | 3556 yen            | 1946 yen   |
| Levofloxacine              | 500mg/100mL     |                     | ·          |
|                            | (kit)           | 3659 yen            | 1431 yen   |
| Vancomycin                 | 0.5g            | 1022 yen            | 681 yen    |
| Vancomycin                 | 1g              |                     | 834 yen    |





6. In the future, do you think it will be necessary to assign higher prices to antimicrobials in order to create an environment in which they can be used in a stable manner?

| Options                                                                                        | <b>Physicia</b><br>72 | <b>ns</b> , n = | Medical Tech<br>= 24 | •       | Pharmac | ists, n = 72 |
|------------------------------------------------------------------------------------------------|-----------------------|-----------------|----------------------|---------|---------|--------------|
| I think it will be necessary                                                                   | 39 (54                | .2%)            | 58                   | (23.5%) | 47      | (65.3%)      |
| I think measures other than increasing the prices assigned to antimicrobials will be necessary | 33 (45                | .8%)            | 189                  | (76.5%) | 25      | (34.7%)      |

7. Did you know that several major pharmaceutical companies have withdrawn from the antimicrobial market due to poor revenue outlook or that certain companies in the U.S. declared bankruptcy, even when their products cost 100,000 yen or more per dose?

| Options | <b>Physicians,</b> n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|---------|---------------------------|----------------------------------|-----------------------------|
| Yes     | 42 (58.3%)                | 67 (27.1%)                       | 42 (58.3%)                  |
| No      | 30 (41.7%)                | 180 (72.9%)                      | 30 (41.7%)                  |

8. Did you know that countries like the U.K. and Sweden have launched pilot programs aiming to create new incentives for antimicrobial development?

| Options             | <b>Physicians,</b> n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|---------------------|---------------------------|----------------------------------|-----------------------------|
| I knew that         | 13 (18.1%)                | 12 (4.9%)                        | 16 (22.2%)                  |
| I did not know that | 59 (81.9%)                | 235 (95.1%)                      | 56 (77.8%)                  |

9. There are currently discussions being held on the need to establish a pull incentive system in Japan that delinks the volume of antimicrobials sold and the profits from their sales to optimize the antimicrobial business while ensuring access. Do you think such a system is necessary in Japan?

| Options           | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|-------------------|----------------------------|----------------------------------|-----------------------------|
| It is necessary   | 48 (66.7%)                 | 77 (31.2%)                       | 45 (62.5%)                  |
| It is unnecessary | 2 (2.8%)                   | 4 (1.6%)                         | 1 (1.4%)                    |
| I don't know      | 22 (30.6%)                 | 166 (67.2%)                      | 26 (36.1%)                  |

10. The budgetary requests from the Ministry of Health, Labor and Welfare (MHLW) for FY2023 include a request for 1.8 billion yen for introducing a pull incentive called the "income compensation system" on a trial basis. What do you think about this amount? (Reference: In the U.K., where a pull incentive system has already been introduced, the amount provided as an incentive is 10 million pounds per drug per year (which, at 160 yen per pound, amounts to 1.6 billion yen) over ten years.)

| Options           | <b>Physicians</b> , n = 72 | Medical Technologists n = 247 | <b>Pharmacists</b> , n = 72 |
|-------------------|----------------------------|-------------------------------|-----------------------------|
| It is very high   | 3 (4.2%)                   | 12 (4.9%)                     | 1 (1.4%)                    |
| It is high        | 10 (13.9%)                 | 56 (22.7%)                    | 3 (4.2%)                    |
| It is appropriate | 22 (30.6%)                 | 116 (47.0%)                   | 25 (34.7%)                  |
| It is low         | 27 (37.5%)                 | 54 (21.9%)                    | 32 (44.4%)                  |
| It is very low    | 10 (13.9%)                 | 9 (3.6%)                      | 11 (15.3%)                  |





11. A group called the AMED Drug Discovery Promotion Review Committee (which includes the Japan Agency for Medical Research and Development (AMED), the President of the Japanese Association for Infectious Diseases, the President of the Japanese Society of Chemotherapy, and members of the Japan Pharmaceutical Manufacturers Association (JPMA)) created the "List of Target Pathogens for AMR Drug Discovery Research (2021 version)." Are there any AMR bacteria included on that list that you have found difficult to treat? Also, have you encountered any infections caused by AMR bacteria that are not on the list but were difficult to treat?

| Options                                                                                                     | <b>Physicians</b> , n = 72 | Medical Technologists<br>n = 247 | <b>Pharmacists</b> , n = 72 |
|-------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
| MDR Acinetobacter                                                                                           | 18 (25.0%)                 | 56 (22.7%)                       | 15 (20.8%)                  |
| MDR Pseudomonas aeruginosa                                                                                  | 49 (68.1%)                 | 138 (55.9%)                      | 43 (59.7%)                  |
| Carbapenem-R Enterobacterales                                                                               | 26 (36.1%)                 | 53 (21.5%)                       | 13 (18.1%)                  |
| Ceph-R (ESBL+) Enterobacterales                                                                             | 25 (34.7%)                 | 58 (23.5%)                       | 27 (37.5%)                  |
| Drug-R <i>Neisseria gonorrhoeae</i>                                                                         | 4 (5.6%)                   | 5 (2.0%)                         | 1 (1.4%)                    |
| MDR/XDR Mycobacterium tuberculosis                                                                          | 8 (11.1%)                  | 32 (13.0%)                       | 9 (12.5%)                   |
| Nontuberculous Mycobacterium (NTM)                                                                          | 29 (40.3%)                 | 43 (17.4%)                       | 16 (22.2%)                  |
| Clostridioides difficile                                                                                    | 25 (34.7%)                 | 47 (19.0%)                       | 28 (38.9%)                  |
| Vancomycin-R Enterococci (VRE)                                                                              | 9 (12.5%)                  | 20 (8.1%)                        | 11 (15.3%)                  |
| Methicillin-R Staphylococcus aureus (MRSA)                                                                  | 34 (47.2%)                 | 73 (29.6%)                       | 41 (56.9%)                  |
| Vancomycin-R Staphylococcus aureus                                                                          | 5 (6.9%)                   | 11 (4.5%)                        | 6 (8.3%)                    |
| Penicillin non-susceptible <i>Streptococcus</i> pneumoniae (PNSP)                                           | 7 (9.7%)                   | 11 (4.5%)                        | 3 (4.2%)                    |
| Drug-R <i>Mycoplasma genitalium</i>                                                                         | 4 (5.6%)                   | 2 (0.8%)                         | 1 (1.4%)                    |
| Candida auris                                                                                               | 0 (0.0%)                   | 7 (2.8%)                         | 2 (2.8%)                    |
| Drug-R Candida                                                                                              | 7 (9.7%)                   | 15 (6.1%)                        | 8 (11.1%)                   |
| Azole-R Aspergillus fumigatus                                                                               | 4 (5.6%)                   | 7 (2.8%)                         | 3 (4.2%)                    |
| Drug-R Helicobacter pyroli                                                                                  | 6 (8.3%)                   | 10 (4.0%)                        | 3 (4.2%)                    |
| Multi-drug resistant Bacteroides fragilis                                                                   | 5 (6.9%)                   | 3 (1.2%)                         | 1 (1.4%)                    |
| Drug-R <i>Campylobacter</i>                                                                                 | 1 (1.4%)                   | 3 (1.2%)                         | 2 (2.8%)                    |
| Drug-R Salmonella                                                                                           | 2 (2.8%)                   | 4 (1.6%)                         | 1 (1.4%)                    |
| Fluorloquinolone-resistant Shigella                                                                         | 1 (1.4%)                   | 1 (0.4%)                         | 1 (1.4%)                    |
| <ul> <li>β – lactamase-nonproducing ampicillin</li> <li>resistant Haemophilus influenzae (BLNAR)</li> </ul> | 15 (20.8%)                 | 12 (4.9%)                        | 8 (11.1%)                   |
| Erythromycin-R group A Streptococcus                                                                        | 0 (0.0%)                   | 3 (1.2%)                         | 5 (6.9%)                    |
| Erythromycin-R group A Streptococcus                                                                        | 1 (1.4%)                   | 4 (1.6%)                         | 2 (2.8%)                    |
| AMR bacteria not on list                                                                                    | 4 (5.6%)                   | 21 (8.5%)                        | 4 (5.6%)                    |





# 12. Please tell us if the facility you are affiliated with receives medical fee reimbursements for implementing infection control measures.

| Options                                                        | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|----------------------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
| Premium for enhancing infection prevention countermeasures I   | 38 (52.8%)                 | 118 (47.8%)                      | 47 (65.3%)                  |
| Premium for enhancing infection prevention countermeasures II  | 13 (18.1%)                 | 35 (14.2%)                       | 8 (11.1%)                   |
| Premium for enhancing infection prevention countermeasures III | 6 (8.3%)                   | 32 (13.0%)                       | 6 (8.3%)                    |
| Premium for enhancing outpatient infection prevention measures | 1 (1.4%)                   | 5 (2.0%)                         | 0 (0.0%)                    |
| Application pending                                            | 0 (0.0%)                   | 1 (0.4%)                         | 0 (0.0%)                    |
| Reimbursement was eliminated in the FY2022 revision            | 0 (0.0%)                   | 4 (1.6%)                         | 0 (0.0%)                    |
| Unknown                                                        | 5 (6.9%)                   | 31 (12.6%)                       | 5 (6.9%)                    |
| N/A                                                            | 9 (12.5%)                  | 21 (8.5%)                        | 6 (8.3%)                    |

## 13. Are current medical fee reimbursements sufficient to cover the costs of infection control measures for AMR bacteria?

| Options               | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
|-----------------------|----------------------------|----------------------------------|---------------------|
| They are sufficient   | 23 (31.9%)                 | 143 (57.9%)                      | 33 (45.8%)          |
| They are insufficient | 49 (68.1%)                 | 104 (42.1%)                      | 39 (54.2%)          |

14. To build or maintain systems for detecting and monitoring AMR bacteria, which of the following items does your institution require the most?

| Options                                                                                                               | Phy | <b>sicians</b> , n = 72 | Medical Techn<br>= 247 | J       | Pharmaci | <b>sts</b> , n = 72 |
|-----------------------------------------------------------------------------------------------------------------------|-----|-------------------------|------------------------|---------|----------|---------------------|
| Tighten standards for calculating infection control reimbursements (such as by clarifying full-time staff in writing) | 21  | (29.2%)                 | 80                     | (32.4%) | 36       | (50.0%)             |
| Increase the number of microbiology technicians on staff                                                              | 28  | (38.9%)                 | 75                     | (30.4%) | 16       | (22.2%)             |
| Expand testing equipment                                                                                              | 8   | (11.1%)                 | 37                     | (15.0%) | 6        | (8.3%)              |
| Other                                                                                                                 | 7   | (9.7%)                  | 18                     | (7.3%)  | 5        | (6.9%)              |
| N/A                                                                                                                   | 8   | (11.1%)                 | 37                     | (15.0%) | 9        | (12.5%)             |

### 15. Does your facility conduct its own nucleic acid amplification testing?

| Options                  | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|--------------------------|----------------------------|----------------------------------|-----------------------------|
| Yes                      | 50 (69.4%)                 | 198 (80.2%)                      | 55 (76.4%)                  |
| No (It is outsourced)    | 14 (19.4%)                 | 34 (13.8%)                       | 5 (6.9%)                    |
| No (It is not conducted) | 7 (9.7%)                   | 11 (4.5%)                        | 4 (5.6%)                    |
| I don't know             | 1 (1.4%)                   | 4 (1.6%)                         | 8 (11.1%)                   |





16. Since December 2019, has your institution made any investments to improve its testing infrastructure to respond to COVID-19 (by purchasing more NAAT equipment, hiring more clinical technologists, etc.)?

| Options      | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
|--------------|----------------------------|----------------------------------|---------------------|
| It has       | 60 (83.3%)                 | 210 (85.0%)                      | 58 (80.6%)          |
| It has not   | 9 (12.5%)                  | 28 (11.3%)                       | 4 (5.6%)            |
| I don't know | 3 (4.2%)                   | 9 (3.6%)                         | 10 (13.9%)          |

## 17. For those who answered "Yes," please share the source of the investment.

| Options      | <b>Physicians</b> , n = 72 | Medical Technologists n = 247 | Pharmacists, n = 72 |
|--------------|----------------------------|-------------------------------|---------------------|
| Subsidies    | 22 (36.7%)                 | 100 (47.6%)                   | 21 (36.2%)          |
| Self-funded  | 2 (3.3%)                   | 18 (8.6%)                     | 3 (5.2%)            |
| Both         | 28 (46.7%)                 | 76 (36.2%)                    | 26 (44.8%)          |
| I don't know | 8 (13.3%)                  | 16 (7.6%)                     | 8 (13.8%)           |

### 18. For those who answered "Yes," please share how the investments were used.

| Options                                                                    | <b>Physicians</b> , n = 72 | Medical Technologists n = 247 | Pharmacists, n = 72 |
|----------------------------------------------------------------------------|----------------------------|-------------------------------|---------------------|
| Purchase of stand-alone testing equipment for the sole purpose of COVID-19 | 37 (51.4%)                 | 126 (51.0%)                   | 25 (34.7%)          |
| Purchase of multipurpose NAAT devices (COVID-19 and influenza, etc.)       | 32 (44.4%)                 | 110 (44.5%)                   | 18 (25.0%)          |
| Purchase of multi-parameter NAAT devices (multiplex PCR)                   | 21 (29.2%)                 | 44 (17.8%)                    | 17 (23.6%)          |
| Increasing the number of Medical<br>Technologists on staff                 | 8 (11.1%)                  | 30 (12.1%)                    | 3 (4.2%)            |
| Other                                                                      | 2 (2.8%)                   | 22 (8.9%)                     | 2 (2.8%)            |
| I don't know                                                               | 6 (8.3%)                   | 2 (0.8%)                      | 13 (18.1%)          |

# 19. Please tell us how frequently each NAAT device at your facility was used to test for COVID-19 over the past four months.

| Options                    | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
|----------------------------|----------------------------|----------------------------------|---------------------|
| 25 or more samples per day | 25 (34.7%)                 | 56 (22.7%)                       | 16 (22.2%)          |
| 12 to 24 samples per day   | 8 (11.1%)                  | 48 (19.4%)                       | 8 (11.1%)           |
| 1 to 11 samples per day    | 14 (19.4%)                 | 71 (28.7%)                       | 11 (15.3%)          |
| 4 to 6 samples per week    | 4 (5.6%)                   | 21 (8.5%)                        | 2 (2.8%)            |
| 1 to 3 samples per week    | 1 (1.4%)                   | 0 (0.0%)                         | 0 (0.0%)            |
| 1 to 4 samples per month   | 1 (1.4%)                   | 8 (3.2%)                         | 0 (0.0%)            |
| 0 to 3 samples per month   | 0 (0.0%)                   | 0 (0.0%)                         | 0 (0.0%)            |
| I don't know               | 9 (12.5%)                  | 8 (3.2%)                         | 31 (43.1%)          |
| Testing is not conducted   | 10 (13.9%)                 | 35 (14.2%)                       | 4 (5.6%)            |





| 20. Is your facility using that infrastructure to test for infectious diseases other than COVID-19? |                            |                                  |                     |
|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|---------------------|
| Options                                                                                             | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
| Yes                                                                                                 | 27 (37.5%)                 | 85 (34.4%)                       | 20 (27.8%)          |
| No                                                                                                  | 33 (45.8%)                 | 129 (52.2%)                      | 20 (27.8%)          |
| I don't know                                                                                        | 12 (16.7%)                 | 33 (13.4%)                       | 32 (44.4%)          |

## 21. In the future, if the number of tests your facility conducts for COVID-19 decreases, are there plans to use the NAAT devices for AMR control?

| Options       | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
|---------------|----------------------------|----------------------------------|---------------------|
| Yes           | 15 (20.8%)                 | 47 (19.0%)                       | 14 (19.4%)          |
| It is unclear | 57 (79.2%)                 | 200 (81.0%)                      | 58 (80.6%)          |

### 22. Are there any tests you would like to see introduced in the future that utilize NAAT devices for AMR control?

| Options            | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | Pharmacists, n = 72 |
|--------------------|----------------------------|----------------------------------|---------------------|
| Yes                | 23 (31.9%)                 | 53 (21.5%)                       | 14 (19.4%)          |
| None in particular | 49 (68.1%)                 | 194 (78.5%)                      | 58 (80.6%)          |





## 23. Do you think establishing a system utilizing NAATs for rapid antibiotic susceptibility testing (AST) will contribute to antimicrobial stewardship?

| Options               | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|-----------------------|----------------------------|----------------------------------|-----------------------------|
| I think it will       | 54 (75.0%)                 | 162 (65.6%)                      | 57 (79.2%)                  |
| I don't think it will | 4 (5.6%)                   | 17 (6.9%)                        | 4 (5.6%)                    |
| I don't know          | 14 (19.4%)                 | 68 (27.5%)                       | 11 (15.3%)                  |

### 24. Are results from rapid tests performed at your facility being reported to the clinic smoothly?

| Options      | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|--------------|----------------------------|----------------------------------|-----------------------------|
| They are     | 58 (80.6%)                 | 223 (90.3%)                      | 52 (72.2%)                  |
| They are not | 3 (4.2%)                   | 4 (1.6%)                         | 8 (11.1%)                   |
| I don't know | 11 (15.3%)                 | 20 (8.1%)                        | 12 (16.7%)                  |

## 25. Do you think establishing a system utilizing NAATs for rapid AMR bacteria testing will contribute to decreasing the number of AMR infections?

| Options                                           | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|---------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
| I think it will                                   | 51 (70.8%)                 | 135 (54.7%)                      | 50 (69.4%)                  |
| I don't think it will                             | 8 (11.1%)                  | 32 (13.0%)                       | 5 (6.9%)                    |
| I think we already have effective testing methods | 0 (0.0%)                   | 0 (0.0%)                         | 0 (0.0%)                    |
| I don't know                                      | 13 (18.1%)                 | 80 (32.4%)                       | 17 (23.6%)                  |

## 26. Regarding NAAT-based systems currently in use at your facility, is there anything that you are dissatisfied with or find concerning?

| Options | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|---------|----------------------------|----------------------------------|-----------------------------|
| Yes     | 33 (45.8%)                 | 86 (34.8%)                       | 17 (23.6%)                  |
| No      | 39 (54.2%)                 | 161 (65.2%)                      | 55 (76.4%)                  |

<sup>27. (</sup>For those who answered "Yes") If possible, please tell us about the main problem that concerns you.

### 28. Does your facility utilize NAATs to conduct active surveillance for AMR bacteria?

| Options                                                                                             | <b>Physicians</b> , n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|-----------------------------|
| Active surveillance is effective, so we do                                                          | 9 (12.5%)                  | 14 (5.7%)                        | 9 (12.5%)                   |
| Active surveillance is effective, so we are conducting it with a method that does not utilize NAATs | 6 (8.3%)                   | 19 (7.7%)                        | 1 (1.4%)                    |
| I think active surveillance is effective and would like to conduct it, but cannot                   | 26 (36.1%)                 | 47 (19.0%)                       | 23 (31.9%)                  |
| I do not think active surveillance is effective                                                     | 9 (12.5%)                  | 17 (6.9%)                        | 1 (1.4%)                    |
| I do not know about active surveillance                                                             | 22 (30.6%)                 | 150 (60.7%)                      | 38 (52.8%)                  |

<sup>→</sup>Free-form responses will be published later.





Did you know that NAATs are not suitable for detecting AMR organisms for certain types of infections (endemic fungi, asymptomatic bacteriuria, etc.)?

| Options | <b>Physicians,</b> n = 72 | Medical Technologists n<br>= 247 | <b>Pharmacists</b> , n = 72 |
|---------|---------------------------|----------------------------------|-----------------------------|
| Yes     | 49 (68.1%)                | 129 (52.2%)                      | 33 (45.8%)                  |
| No      | 23 (31.9%)                | 118 (47.8%)                      | 39 (54.2%)                  |

#### **About Health and Global Policy Institute**

Health and Global Policy Institute (HGPI) is a non-profit, independent, non-partisan health policy think tank established in 2004. In its capacity as a neutral think-tank, HGPI involves stakeholders from wide-ranging fields of expertise to provide policy options to the public to successfully create citizen-focused healthcare policies. Looking to the future, HGPI produces novel ideas and values from a standpoint that offers a wide perspective. It aims to realize a healthy and fair society while holding fast to its independence to avoid being bound to the specific interests of political parties and other organizations. HGPI intends for its policy options to be effective not only in Japan, but also in the wider world, and in this vein the institute will continue to be very active in creating policies for resolving global health challenges. HGPI's activities have received global recognition. It was ranked second in the "Domestic Health Policy Think Tanks" category and third in the "Global Health Policy Think Tanks" category in the Global Go To Think Tank Index Report presented by the University of Pennsylvania (as of January 2021, the most recent report).

#### **About AMR Alliance Japan**

AMR Alliance Japan was established in November 2018 as a multi-stakeholder, collaborative organization dedicated to the improvement of public health through the promotion of AMR countermeasures. As of March 2023, its members include MSD K.K., The Children and Healthcare Project, Shionogi & Co., Ltd., Sumitomo Pharma Co., Ltd., The Japanese Society of Antimicrobials for Animals, NISSUI Pharmaceutical Co., Ltd., Nippon Becton Dickinson Co., Ltd., The Japan Medical Association, The Japanese Society for Medical Mycology, The Japanese Society of Pharmaceutical Health Care and Sciences, The Japanese Society of Chemotherapy, The Japanese Society for Infection Prevention and Control, The Japanese Association for Infectious Diseases, The Japanese Society for Pediatric Infectious Diseases, The Japan Pharmaceutical Manufacturers Association, The Japanese Society of Therapeutic Drug Monitoring, The Japan Society of Hospital Pharmacists, The Pharmaceutical Society of Japan, The Japan Pharmaceutical Association, The Japanese Society for Clinical Microbiology, bioMérieux Japan Ltd., Himeji City, Pfizer Japan Inc., and Meiji Seika Pharma Co., Ltd. Health and Global Policy Institute (HGPI) serves as its secretariat.